Effect of split application of nitrogen on productivity, profitability and nitrogen use efficiency in garden pea (*Pisum sativum* L.) under dry temperate conditions of Himachal Pradesh

Janardan Singh¹ and D R Chaudhary²
Highland Agricultural Research and Extension Centre, Kukumseri 175142 Lahaul & Spiti, Himachal Pradesh

Present address:
1.Professor, Department of Agronomy, Forages and Grassland Management, College of Agriculture, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur-176062, HP
2.Professor, Directorate of Extension Education, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur-176062, HP

Corresponding author: singhjdr@rediffmail.com

Received: 22 January 2015; Accepted: 15 April 2015

Abstract
A field experiment comprising of six treatments viz. N₀ (control), N₂₀ (20 kg N/ha as basal), N₄₀ (40 kg N/ha as basal), N₂₀₋₂₀ (40 kg N/ha in two equal splits, half as basal and another half as top-dressing at 30 DAS), N₆₀ (60 kg N/ha as basal) and N₃₀₋₃₀ (60 kg N/ha in two equal splits) was conducted at Highland Agricultural Research and Extension Centre, Kukumseri during summer 2013 to study the effect of split application of nitrogen on growth, yield, economics and nitrogen use efficiency in garden pea. N at 60 kg/ha in splits gave taller plants while the shorter plants were under control. Basal application of 40 kg N/ha proved to be the best treatment for increasing productivity and profitability of garden pea in cold desert region of Himachal Pradesh. The highest dry matter production (5166 kg/ha) was recorded at N₄₀. Maximum dry matter efficiency (0.83%/day), unit area efficiency (4.31g/m²/day), green pod weight (4.3 g/pod) and productivity (43.13 kg/ha/day) were recorded at N₄₀. The highest green pod yield (3666 kg/ha) was at N₄₀ which was 120 and 62.9% higher over N₀ and N₂₀, respectively. Maximum nitrogen use efficiency (50 kg green pod/kg N), gross returns (INR 99150/ha), net returns (INR 62859/ha), B:C ratio (2.73) and profitability (INR740/ha/day) were also at N₄₀.

There was no benefit of using N in splits in pea in this drier tract of the state.

Key words: Nitrogen, nitrogen use efficiency, productivity, profitability, garden pea

The dry temperate region comprising of Lahaul & Spiti, Kinnaur and Bhamaur and Pangi areas of Chamba district of Himachal Pradesh, is an important vegetable growing region (Anonymous 2012; Singh et al. 2015; Kumar et al. 2015; Singh and Chaudhary 2016). It constitutes about 42% of the total geographical area of the state. Garden pea (*Pisum sativum* L.) is an important off-season cash crop vegetable of dry temperate region. It is a major source of income for the farmers as it fetches higher price due to its good aroma, sweetness and freshness. It is a cool season, self pollinated and hardy tendril climbing plant. It is rich in protein, vitamins A, B and C and minerals (Baloch 1994). Fertilizers are kingpins in increasing productivity of peas (Chadha et al. 2004). However, imbalanced application of fertilizers is one of major reasons for low crop productivity and thereby profitability in the region. In dry temperate region, crop is generally raised using frequent irrigation. Therefore, nitrogen is also applied as top dressing by the farmers for enhancing garden pea yield. Keeping these facts in mind, the present investigation was undertaken to study the effect of split application of nitrogen on productivity, profitability and nitrogen use efficiency in garden pea in dry temperate region of Himachal Pradesh.

The field experiment was conducted during sum-
mer 2013 at Kukumseri (32° 44' 55" N latitude, 76° 41' 23" E longitude and 2672 m above the mean sea level). The climate was extremely cold and heavy snowfall occurs during winter. Single cropping season was prevailing in the region which starts from April to September or early October when the mean minimum and maximum temperature ranges from 12 to 24°C. There is negligible rainfall followed by high light intensity and low humidity. The soil of the experimental site was sandy loam in texture and acidic in reaction with 11.1 g OC/kg soil, 247 kg available N/ha, 31 kg available P/ha and 289 kg available K/ha. Soils were shallow in depth and loose in texture resulting in poor water holding capacity. The experiment was laid out in randomized block design with six treatments viz. N0 (control), N20 (20 kg N/ha as basal), N40 (40 kg N/ha as basal), N20+20 (40 kg N/ha in two equal splits, half as basal and another half as top-dressing at 30 DAS), N60 (60 kg N/ha as basal) and N30+30 (60 kg N/ha in two equal splits) and three replications. Phosphorus and potassium were applied at 60 kg P2O5 and 60 kg K2O/ha, respectively as basal application. N, P and K were supplied through urea, single super phosphate and muriate of potash, respectively. Garden pea cv Azad P-1 was sown on 4th June, 2013 at 45 cm inter-row spacing with a seed rate of 100 kg/ha. Seed was treated with bavistin at 2.5 g/kg seed. Pendimethalin was applied (1.35 kg/ha in 750 l of water/ha) within 48 hours of sowing for the control of weeds. Snow-melt water, the only source of irrigation was used to irrigate garden pea through sprinklers. The crop was harvested on 29th August, 2013. Other package of practices recommended for the region was followed. Plant height, plant stand, dry matter production, green pod weight and green pod yield were recorded and productivity (kg/ha/day), dry matter efficiency (DME, % economic product/day), unit area efficiency (UAE, g/m⁲/day), nitrogen use efficiency (NUE, kg green pod yield/kg N), cost of cultivation, gross returns, net returns, B:C ratio and profitability were computed after the harvest of the crop. Statistical differences between treatments were tested with Fisher’s least significant difference (P=0.05) test (Fisher and Yates 1949) using analysis of variance for randomized block design as described by Panse and Sukhatme (1967).

Plant height was significantly influenced due to nitrogen application (Table 1). It increased with increase in nitrogen up to 20 kg N/ha. Nitrogen levels resulted in similar plant height. However, 60 kg N/ha in splits has

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Plant height (cm)</th>
<th>Plant density (Plants/m²)</th>
<th>Dry matter production (kg/ha)</th>
<th>Green pod yield (kg/ha)</th>
<th>Productivity (kg/ha/day)</th>
<th>DME (%/day)</th>
<th>UAE (g/m²/day)</th>
<th>Green pod weight (g)</th>
<th>Green pod yield (kg/ha)</th>
<th>NUE (kg green pod yield/kg N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0 (control)</td>
<td>23.1</td>
<td>56</td>
<td>2666</td>
<td>1666</td>
<td>0.74</td>
<td>1.96</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>N20 (basal)</td>
<td>37.9</td>
<td>55</td>
<td>4416</td>
<td>2250</td>
<td>0.60</td>
<td>2.65</td>
<td>29.2</td>
<td>29.2</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td>N40 (basal)</td>
<td>38.2</td>
<td>49</td>
<td>5166</td>
<td>3666</td>
<td>0.83</td>
<td>3.41</td>
<td>35.4</td>
<td>35.4</td>
<td>24.2</td>
<td></td>
</tr>
<tr>
<td>N20+20 (split)</td>
<td>38.1</td>
<td>57</td>
<td>4833</td>
<td>3083</td>
<td>0.75</td>
<td>3.67</td>
<td>22.2</td>
<td>22.2</td>
<td>35.4</td>
<td></td>
</tr>
<tr>
<td>N60 (basal)</td>
<td>37.8</td>
<td>52</td>
<td>5000</td>
<td>3116</td>
<td>0.73</td>
<td>3.67</td>
<td>24.2</td>
<td>24.2</td>
<td>35.4</td>
<td></td>
</tr>
<tr>
<td>N30+30 (split)</td>
<td>41.7</td>
<td>48</td>
<td>5033</td>
<td>3000</td>
<td>0.70</td>
<td>3.53</td>
<td>22.2</td>
<td>22.2</td>
<td>35.4</td>
<td></td>
</tr>
<tr>
<td>SE m ±</td>
<td>1.7</td>
<td>3.8</td>
<td>146</td>
<td>738</td>
<td>0.6</td>
<td>455</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

*½ N as basal and ½ N as top dressing at 30 days after sowing.
an edge in influencing the crop height. Number of plants per square meter was not affected significantly due to N application. Dry matter production increased significantly with an increase in nitrogen level up to 40 kg N/ha. Application of 20 (basal), 40 (basal), 40 (two splits), 60 (basal) and 60 (two splits) kg N/ha resulted in 65, 93.8, 81.2, 87.5 and 88.8% higher dry matter production over control treatment. Application of 40 (basal) and 40 (two splits) kg N/ha gave 17 and 9.4 percent higher dry matter production than 20 kg N/ha, respectively. However, N\textsubscript{40} and N\textsubscript{60} produced similar crop dry matter. Split application of N did not have any benefit in influencing crop dry matter. Maximum dry matter efficiency was recorded with basal application of 40 kg N/ha while minimum dry matter efficiency was at N\textsubscript{20}. Like dry matter efficiency, maximum unit area efficiency was also noted at N\textsubscript{40} but minimum was in control treatment (Table 1). Nitrogen plays a key role in increasing vegetative growth while phosphorus and potassium improve root growth and seed quality, respectively. Taller plants and higher dry matter production, dry matter efficiency and unit area efficiency might be due to better availability of nutrients at critical growth stages. Saimbhi and Grewal (1986), Subhan (1991), Ali et al. (2001), Kakar et al. (2002), Gul et al. (2006), Achakzai and Bangulzai (2006) and Gul et al. (2006) also observed response of peas to nitrogen application.

Green pod weight increased significantly up to 20 kg N/ha. Maximum green pod weight was recorded under basal application of 40 kg N/ha while the lowest green pod weight was in the control treatment. Green pod yield increased significantly up to 40 kg N/ha. N at 60 kg/ha produced significantly lower green pod yield than at 40 kg/ha. Application of 20 (basal), 40 (basal), 40 (two splits), 60 (basal) and 60 (two splits) kg N/ha resulted in 35, 120, 85, 87 and 80%, respectively higher green pod yield over control. Green pod yield under 40 (basal), 40 (two splits), 60 (basal) and 60 (two splits) kg N/ha was 63, 19, 18 and 22%, respectively, higher over 20 kg N/ha. Productivity showed increasing trend with an increase in the level of nitrogen up to 40 kg N/ha, afterwards it declined. Split application of N at 40 kg N/ha had lower yield than its whole basal. This clearly indicated that split application is not at all required in pea. Higher green pod yield at 40 kg N/ha might be attributed to the significant influence of nitrogen on translocation of nutrients and dry matter accumulation during reproductive stage which in turn improved growth and yield attributes and ultimately yield. Saimbhi and Grewal (1986), Pochauri et al. (1991), Subhan (1991), Verma and Saxena (1995), Yadav (1996), Ali et al. (2001), Kakar et al. (2002), Achakzai and Bangulzai (2006) and Gul et al. (2006) also observed response of peas to nitrogen application.

Nitrogen use efficiency indicates increment in green pod yield per kg nitrogen applied in the field. Nitrogen use efficiency increased upto 40 kg N/ha. It showed decreasing trend with an increase in nitrogen level after 40 kg N/ha.

Economical viability of any technology plays a key role in adoption of technology as farmers always prefer low cost and high profitable technology. Considering these facts, the various economics parameters like cost of cultivation, gross returns, net returns, benefit cost ratio and profitability of treatments were computed (Table 2). Maximum gross returns, net returns, B:C

Table 2. Effect of levels and methods of nitrogen application on economics

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Cost of cultivation (₹/ha)</th>
<th>Gross returns (₹/ha)</th>
<th>Net returns (₹/ha)</th>
<th>B:C ratio</th>
<th>Profitability (₹/ha/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N\textsubscript{0} (control)</td>
<td>35851</td>
<td>46650</td>
<td>10799</td>
<td>1.30</td>
<td>127.05</td>
</tr>
<tr>
<td>N\textsubscript{20} (basal)</td>
<td>36071</td>
<td>67080</td>
<td>31009</td>
<td>1.86</td>
<td>364.81</td>
</tr>
<tr>
<td>N\textsubscript{40} (basal)</td>
<td>36291</td>
<td>99150</td>
<td>62859</td>
<td>2.73</td>
<td>739.52</td>
</tr>
<tr>
<td>N\textsubscript{20+20} (split)*</td>
<td>36491</td>
<td>85825</td>
<td>49334</td>
<td>2.35</td>
<td>580.40</td>
</tr>
<tr>
<td>N\textsubscript{60} (basal)</td>
<td>36511</td>
<td>87320</td>
<td>50809</td>
<td>2.39</td>
<td>597.75</td>
</tr>
<tr>
<td>N\textsubscript{30+30} (split)*</td>
<td>36711</td>
<td>85165</td>
<td>48454</td>
<td>2.32</td>
<td>570.05</td>
</tr>
</tbody>
</table>

*½ N as basal and ½ N as top dressing at 30 days after sowing
ratio and profitability were obtained with basal application of 40 kg N/ha. Application of 20 (basal), 40 (basal), 40 (two splits), 60 (basal) and 60 (two splits) kg N/ha resulted in 187, 482, 356, 370 and 348% higher net returns and profitability over control (N_0). Basal application of 40 kg N/ha resulted in 482 and 103% higher net returns and profitability over 0 and 20 N/ha (basal), respectively. The higher returns under 40 kg N/ha could be attributed to increased green pod yield with application of fertilizers.

The present study revealed that basal application of 40 kg N/ha is the best treatment for increasing productivity and profitability of garden pea in dry temperate region of Himachal Pradesh. Results showed that split application of N was not beneficial over the whole basal.

References