Plant Virus Isolation, Purification and Characterization

P.N. Sharma
Department of Plant Pathology, CSK HPKV, Palampur (H.P.)
Purification is the process of separating the virus particles from host constituents and other chemicals present in sap.

Purified viral preparations help in:
- Study of physico-chemical properties of the virus
- Virus morphology (Shape & size)
Isolation

- First step in purification and characterization of plant viruses
 - Choice of host:
 - Propagative host
 - Assay host: LL
 - Preparation of sap extract
 - Use of additives or stabilizing agents
- Substances protecting against phenolics:
 - cysteine hydrochloride, sodium sulphite: prevent action of phenol oxidases.
 - PVP-polyvinyl pyrrolidine, PEG- Polyethylene glycol: reduces binding of virus with phenols
- Additives that removes plant protein and ribosomes
 - Mg bentonite- reduces contamination of virus extract with nucleases and ribosomes (mainly 19s protein)
 - Charcoal: adsorb host pigments
 - NaEDTA-ethylene diamine tetracetic acid @ 0.01M, ph 7.4
- Enzymes:
 - eg. Pectinase is used to degrade mucilage in sap of cocoa leaves prior to precipitation of CSSC, Trypsin -TuMv
- Detergents & other additives
 - Non-toxic detergents like Triton X-100 or Tween 80 – used in extraction medium help in release of virus particles from cell components
Purification

- **Clarification:**
 - removal of host constituents only
 - Extracting medium supplemented with anatioxidanats or reducing agents (2-mercaptaethanol, thioglycolic acid, Sodium sulphite) & chelating agents (EDTA-ethylene diamine tetracetic acid)
 - Potyviruses in alkaline medium
 - Isometric viruses in acidic medium
 - **Centrifugation at 1000 to 10,000 rpm for 5-15 min.**
 - The host constituents settle as pellet no the virus particles
Concentration

- Concentration: commonly used method
 - High speed centrifugation or
 - Ultra centrifugation

- Done for 1-2 hrs at 35,000 to 60,000 rpm

- In this aqueous phase is discarded and pellet containing virus particles is resuspended in buffer.

- To increase the purity of the virus preparation the suspension may be subjected to
 - alternate cycles of low and high speed centrifugation called differential centrifugation
Final purification

- **Density gradient centrifugation (rate zonal centrifugation):**
 - Involves high speed centrifugation of 50,000 to 70,000 rpm
 - Uses some dense substances sucrose/ CsCl2 to create different densities
- Components of virus suspension are separated according to size, shape and density (Sedimentation coefficient)
- **Testing of purity**
- **Other methods of final purification are**
 - Gel electrophoresis
 - Gel chromatography
- **Storage of purified preparations**
 - At -20°C by adding few drops of chlorobutanol, sodium azide, etc. to prevent growth of microbes and stabilize the virus
 - In liquid nitrogen by adding equal vol. of glycerol in final preparation.
 - As lyophilized
Virus concentration

- US absorption spectrum
 - Virus concentration in the purified preparations analyzed by measuring the absorption spectrum of the virus particles at 260/280 nm ratio under UV spectrophotometer.
 - Values of $A_{\text{min}}/A_{\text{max}}$, A_{260}/A_{280} calculated to know the approximate percentage of nucleo-protein by using data processor yielding spectral curves (absorbance vs. wavelength).
 - The UV-absorption of the purified virus preparations show optical density (OD) value of
 - 0.29 to 0.31 at 260nm and
 - 0.861 to 1.013 at 280nm.
Methods of Purification

- Method vary from virus to virus or even strains
- For isometric viruses
- For rod shaped viruses
- For flexuous viruses
 - Carbon tetra chloride based method
 - N-butanol based method
 - Calcium phosphate based method
 - Cavileer buffer based method